此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

当前位置: 首页 > 实验室介绍 > 实验室主任

https://wzq.szu.edu.cn/_vsl/F529DCF263FF87E19F1E034F572B390A/AD2D6EC1/C96C?e=.jpg

 

 李学金,教授,博士生导师,广东省“千百十人才”省级培养对象,深圳市孔雀计划A类人才,深圳大学首批优秀学者,传感器学科带头人。长期从事光纤传感器和薄膜器件的教学与研究工作,主持国家自然科学基金重点项目、面上项目、教育部博士学科项目和省部产学研等项科研目20余项。2009年获得深圳市科技创新奖(第一完成人),2010年获得广东省科学技术三等奖(第一完成人),2019年获得深圳市自然科学二等奖(第一完成人)。在Nano EnergyBiosensors & bioelectronics, Scientific ReportsOptics Letter, Optics Express, Sensors and Actuators B: Chemical, IEEE Photonics Technology Letters, Applied Physics B, Applied Optics, Journal of Physics D: Applied PhysicsPlasmonics.等国际权威期刊发表论文200余篇,申请和获得授权的发明专利30余项,其中美国专利1项;在光子晶体光纤传感器研究方面,在国内外具有一定影响,曾担任第五届微纳米技术“创新与产业化”国际研讨会(2011 The 5th International Workshop on Innovation and Commercialization of Micro & Nano Technologies)和2016全国光纤传感学术会议主席。同时兼任《传感技术学报》、《计测技术》编委、广东省传感器技术产学研联盟理事长、深圳市传感器技术产学研联盟理事长、深圳市仪器仪表与自动化行业协会副会长、教育部全国高校传感器技术研究会理事、中国仪器仪表学会微纳器件与系统技术学会常务理事;广东省仪器仪表学会常务理事和深圳市光学学会常务理事等。

 

  • 获奖:

获奖名称

获奖等级

排名

用于工程结构与危化品安全监测的传感器关键技术

广东省科学技术三等奖

2010年度)

第一

面向工程结构与危化品安全监测的新型光纤传感器和纳米气体传感器技术

深圳市创新奖

2009年度)

第一

新型超灵敏光纤温度传感器创新技术研究

深圳市自然科学二等奖
 
2019年度)

第一

 

  • 科研项目:

主持国家自然科学基金重点项目、面上项目、教育部博士学科项目和省部产学研等科研项目20余项,总经费3500余万元。主持的部分国家级科研项目有:

[1] 国家自然科学基金重点支持项目,U1813207,机器人旋转机构光学触觉、视觉感知信号旁轴旋转耦合方法的研究,2019/01-2022/12,289万,已结题,主持;
[2] 国家自然科学基金面上项目,61775149,一种新型SPR光纤传感器及其复用与集成方法研究,2018/01-2021/12,66万,已结题,主持;
[3] 国家自然科学基金面上项目,61275125,基于量子点填充的光子晶体光纤多参量荧光温度传感器研究,2013/01-2016/12,82万,已结题,主持;
[4] 博士学科点专项科研基金,20124408110003,光子晶体光纤荧光温度传感器及其信号处理,2013/01-2015/12,12万,已结题,主持;
[5] 国家自然科学基金面上项目,60777036,光子晶体光纤温度传感器特性研究,2008/01-2010/12,31万,已结题,主持;

 

  • 授权专利:

[1] 中国实用新型,专利名称:SPR传感器,发明人:陈郁芝、李学金、洪学明,授权专利号:202121293618.3,申请日期:2021/6/9,授权日期:2023/5/30。
[2] 中国发明专利,专利名称:一种光纤传感器及其制作方法,发明人:耿优福、王丽娜、王佳琦、洪学明、李学金,授权专利号:201910725493.8,申请日期:2019/8/7,授权日期:2021/6/1。
[3] 中国发明专利,专利名称:一种DNA探针及制作方法,发明人:耿优福、许译文、王丽娜、易多、洪学明、李学金,授权专利号:201910634567.7,申请日期:2019/7/15,授权日期:2022/3/18。
[4] 中国发明专利,专利名称:一种干涉型分布式光纤振动传感器,发明人:滕飞、李学金、易多、洪学明,授权专利号:201910146087.6,申请日期:2019/2/28,授权日期:2021/4/7。
[5] 中国发明专利,专利名称:一种基于干涉型分布式光纤振动传感器的定位方法,发明人:滕飞、李学金、易多、洪学明,授权专利号:201910146077.2,申请日期:2019/2/28,授权日期:2021/11/3。
[6] 中国实用新型,专利名称:一种光纤纠偏器,发明人:陈郁芝、李学金、周华胜、耿优福、洪学明,授权专利号:201721176901.1,申请日期:2017/9/14,授权日期:2018/6/22。
[7] 中国实用新型,专利名称:一种液体比重仪,发明人:李学金、陈郁芝、周华胜,授权专利号:201520045154.2,申请日期:2015/1/22,授权日期:2015/6/17。
[8] 美国发明专利,专利名称:Chloride Ion   Fluorescence Detection Method and Device, and Use Thereof,发明人:李学金、任祥忠、倪卓、吴奕光 ,授权专利号:US 9,234,844 B2,申请日期:2014/10/23,授权日期:2016/1/12。
[9] 中国发明专利,专利名称:一种粗腰锥光纤的制备装置及方法,发明人:耿优福、殷震、李学金、谭晓玲、洪学明,授权专利号:201410492278.5,申请日期:2014/10/1,授权日期:2017/8/4。
[10] 中国发明专利,专利名称:一种光纤折射率传感器及其制作方法,发明人:谭晓玲、李学金、耿优福、殷震、洪学明,授权专利号:201410367715.0,申请日期:2014/8/1,授权日期:2017/6/23。
[11] 中国实用新型,专利名称:液位检测系统,发明人:陈郁芝、李学金,授权专利号:201420550710.7,申请日期:2014/9/24,授权日期:2014/12/1。
[12] 中国发明专利,专利名称:基于微结构光纤的温度传感器及其制备方法和测温装置,发明人:李学金、王文辕、尹晓金,授权专利号:201410156307.0,申请日期:2014/4/18,授权日期:2017/8/25。
[13] 中国发明专利,专利名称:一种光纤表面等离子体共振传感器、检测系统及方法,发明人:谭志新、李学金、邵永红,授权专利号:201410054872.6,申请日期:2014/2/18,授权日期:2017/1/4。
[14] 中国实用新型,专利名称:一种柱形体侧柱面镀膜装置及真空镀膜设备,发明人:陈郁芝、李学金、谭志新,授权专利号:201320529780.X,申请日期:2013/8/28,授权日期:2014/3/12。
[15] 中国发明专利,专利名称:一种柱形体侧柱面镀膜装置及真空镀膜设备,发明人:陈郁芝、李学金、谭志新,授权专利号:201310382134.X,申请日期:2013/8/28,授权日期:2015/12/23。
[16] 中国实用新型,专利名称:一种光纤传感器及测量系统,发明人:谭志新、李学金、陈郁芝,授权专利号:201320459638.2,申请日期:2013/7/30,授权日期:2014/3/12。
[17] 中国发明专利,专利名称:一种光纤传感器、制备方法及测量系统,发明人:谭志新、李学金、陈郁芝,授权专利号:201310325796.3,申请日期:2013/7/30,授权日期:2016/8/3。
[18] 中国发明专利,专利名称:一种荧光检测氯离子的方法及其装置和应用,发明人:李学金、任祥忠、倪卓、吴奕光 ,授权专利号:201110361199.7,申请日期:2011/11/15,授权日期:2013/10/16。
[19] 中国发明专利,专利名称:一种光纤温度传感器及测量系统和信号处理方法,发明人:李学金、洪学明 ,授权专利号:201110252767.X,申请日期:2011/8/30,授权日期:2014/2/5。
[20] 中国发明专利专利名称:一种体育球类惯性测量系统,发明人:陈昱全、李学金,授权专利号:200810066621.4,申请日期:2008/4/16,授权日期:2012/6/27。
[21] 中国发明专利,专利名称:光子晶体光纤荧光温度传感器及测量系统,发明人:李学金,授权专利号:200810065176.X,申请日期:2008/1/11,授权日期:2013/5/8。
[22] 中国发明专利专利名称:双金属片型光纤微弯温度传感器,发明人:李学金,授权专利号:200810065174.0,申请日期:2008/1/11,授权日期:2012/9/5。
[23] 中国发明专利专利名称:差动式光纤微弯传感器,发明人:李学金,授权专利号:200510035613.X,申请日期:2005/6/28,授权日期:2008/4/23。

 

  • 近三年发表的部分文章:

[1] L. Wang, Y. Geng, X. Li, D. Yi,   Z. Tong, T. Duan, S. Chen, X. Hong. High-Resolution Optical Fiber Salinity   Sensor With Self-Referenced Parallel Fabry-Perot Fiber Microcavity. IEEE SENS   J. 23 (2023), 337-343.(SCI/EI),(IF:4.300)
[2] X. Chen, L. Xiao, X. Li, D. Yi,   J. Zhang, H. Yuan, Z. Ning, X. Hong, Y. Chen. Tapered Fiber Bioprobe Based on   U-Shaped Fiber Transmission for Immunoassay. BIOSENSORS-BASEL. 13 (2023).(SCIE),(IF:5.400)
[3] S. Dai, X. Li, Y. Chen, J. Zhang,   X. Hong. Highly reproducible fiber optic surface plasmon resonance biosensors   modified by CS2 for disposable immunoassays. SENSOR ACTUAT B-CHEM. 374   (2023).(SCIE/EI),(IF:8.400)
[4] S. Zhou, X. Li, J. Zhang, H.   Yuan, X. Hong, Y. Chen. Dual-fiber optic bioprobe system for triglyceride   detection using surface plasmon resonance sensing and lipase-immobilized   magnetic bead hydrolysis. BIOSENS BIOELECTRON. 196 (2022).(SCI/EI),(IF:12.600)
[5] S. Chen, T. Liu, M. Chen, M. Ishaq, R.   Tang, Z. Zheng, X. Li, X. Qiao, G. Liang. Crystal growth promotion and   interface optimization enable highly efficient Sb 2 Se 3 photocathodes for   solar hydrogen evolution. NANO ENERGY. 99 (2022).(SCIE/EI),(IF:17.600)
[6] Y. Geng, X. Zhu, J. Lu, D. Yi, Z. Tong,   L. Wang, T. Duan, X. Li, X. Hong, J. Wang. Femtosecond laser written   ultra-weak Fabry-Perot array for distributed absolute temperature profile   sensing with high spatial resolution. OPT EXPRESS. 30 (2022), 47038-47047.(SCIE/EI),(IF:3.800)
[7] J.H. Zhang, X.M. Mai, X.M. Hong, Y.Z.   Chen, X.J. Li. Optical fiber SPR biosensor with a solid-phase   enzymatic reaction device for glucose detection. SENSOR ACTUAT B-CHEM. 366   (2022).(SCIE/EI),(IF:8.400)
[8] J. Meng, W. Luo, D. Yi, X. Li, X.   Hong. Numerical Analyses of Liquid-Core Fiber Optic SPR Sensor with   Nano-Porous Sio2 as Inner Coating. Journal of Physics: Conference Series.   2185 (2022), 12076.(EI)
[9] J.Q. Wang, Z.W. Wei, H.B. Qiu, Z.K.   Xing, Y.Z. Chen, Y.F. Geng, Y. Du, X.J. Li, Z.Z. Cheng. In-Situ Study   of Dynamics of Refractive Index Changes in Silicon Devices Induced by   UV-light Irradiation. IEEE PHOTONICS J. 14 (2022).(SCIE/EI),(IF:2.400)
[10] Z. Tong, L. Wang, T. Duan, Y. Geng, X.   Li, D. Yi, X. Hong. High resolution polymer/air double-cavity Fabry-Perot   fiber temperature sensor based on exposed core microstructured fiber. J PHYS   D APPL PHYS. 55 (2022).(SCI/EI),(IF:3.400)
[11] D. Yi, C. Wang, L. Gao, Y. Chen, F. Liu,   Y. Geng, H. Zhang, X. Li. Ti 3 CN MXene-based ultra-sensitive optical   fiber salinity sensor. OPT LETT. 47 (2022), 138-141.(SCIE/EI),(IF:3.600)
[12] J. Huang, J. Li, Z. Zhang, J. Li, X.   Cao, J. Tang, X. Li, Y. Geng, J. Wang, Y. Du, Y. Yang, X. Pan. Bimetal   Ag NP and Au NC modified In2O3 for ultra-sensitive detection of ppb-level   HCHO. SENSOR ACTUAT B-CHEM. 373 (2022).(SCIE/EI),(IF:8.400)
[13] Q. Wang, J. Hong, Z. Zhang, J. Li, X.   Cao, J. Tang, Y. Geng, J. Wang, X. Li, K. Pei, Y. Du, X. Tian. Visible   light-activated ethanol sensor based on flower-like N3-loaded ZnO composites.   SENSOR ACTUAT B-CHEM. 370 (2022).(SCIE/EI),(IF:8.400)
[14] Y. Zhou, C.T. Chan, H. Zhang, N. Li, X.   Li, H. Ho. Identification of Analytical Singularity in a Non-Plasmonic   Nanosensing System. LASER PHOTONICS REV. 16 (2022).(SCIE/EI),(IF:11.000)
[15] L. Wang, D. Yi, Y. Geng, T. Duan, Z.   Tong, S. Chen, Z. Ning, Yu Du, X. Hong, X. Li. Ultrasensitive deafness   gene DNA hybridization detection employing a fiber optic Mach-Zehnder   interferometer: Enabled by a lack phosphorus nanointerface. Biosensors and   Bioelectronics (2022).(SCI),(IF:12.545)
[16] D. Yi, F. Liu, Y. Geng, X. Li, X.   Hong. High-sensitivity and large-range fiber optic temperature sensor based   on PDMS-coated Mach-Zehnder interferometer combined with FBG. OPT EXPRESS. 29   (2021), 18624-18633.(SCIE/EI),(IF:3.800)
[17] J. Huang, D. Jiang, J. Zhou, J. Ye, Y.   Sun, X. Li, Y. Geng, J. Wang, Y. Du, Z. Qian. Visible light-activated   room temperature NH 3 sensor base on CuPc-loaded ZnO nanorods. SENSOR ACTUAT   B-CHEM. 327 (2021).(SCI/EI),(IF:8.400)
[18] D. Yi, Z. Huo, X. Tan, Y. Geng, F. Liu, X.   Li. Optimization Analysis of Lateral-Offset Mach-Zehnder Interferometer   Based on No-Core Fiber. IEEE SENS J. 21 (2021), 7.(SCI/EI),(IF:4.300)
[19] W. Luo, J. Meng, X. Li, Q. Xie,   D. Yi, Y. Wang, X. Hong. Temperature effects on surface plasmon resonance sensor   based on side-polished D-shaped photonic crystal fiber. MEASUREMENT. 181   (2021).(SCIE/EI),(IF:5.600)
[20] T. Sharma, V. Rana, J. Wang, Z. Cheng,   Y. Chen, Y. Geng, X. Hong, X. Li, K. Yu, B.K. Kaushik. Design of   grating based narrow band reflector on SOI waveguide. OPTIK. 227 (2021).(SCI/EI),(IF:3.100)
[21] W. Luo, J. Meng, X. Li, D. Yi, F.   Teng, Y. Wang, X. Hong. Long-range surface plasmon resonance sensor based on   side-polished D-shaped hexagonal structure photonic crystal fiber with the   buffer layer of magnesium fluoride. J PHYS D APPL PHYS. 54 (2021).(SCI/EI),(IF:3.400)
[22] J. Wang, X. Zhang, Z. Wei, H. Qiu, Y.   Chen, Y. Geng, Y. Du, Z. Cheng, X. Li. Design of a Dual-Mode   Graphene-on-Microring Resonator for Optical Gas Sensing. IEEE ACCESS. 9 (2021),   56479-56485.(SCIE/EI),(IF:3.900)
[23] D. Yi, F. Liu, M. Zhang, X. He, X. Zhou,   K. Long, X. Li. Demonstration of Fiber-Optic Seismic Sensor With   Improved Dynamic Response in Oilfield Application. IEEE T INSTRUM MEAS. 71   (2022).(SCIE/EI),(IF:5.600)
[24] J. Huang, H. Liang, J. Ye, D. Jiang, Y.   Sun, X. Li, Y. Geng, J. Wang, Z. Qian, Y. Du. Ultrasensitive   formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low   temperature. SENSOR ACTUAT B-CHEM. 346 (2021).(SCI/EI),(IF:8.400)
[25] J. Wang, X. Zhang, Y. Chen, Y. Geng, Y.   Du, X. Li. Design of a graphene-based silicon nitride multimode   waveguide-integrated electro-optic modulator. OPT COMMUN. 481 (2021).(SCI/EI),(IF:2.400)
[26] J. Wang, H. Qiu, Z. Wei, Y. Chen, Y.   Geng, Y. Du, Z. Cheng, X. Li. Design of a Graphene-Based   Waveguide-Integrated Multimode Phase Modulator. IEEE PHOTONICS J. 13 (2021).(SCIE/EI),(IF:2.400)
[27] X. Chen, X. Li, D. Yi, X.M. Hong,   Y. Chen. Plasmonic tapered-fiber interference sensor for simultaneously   detecting refractive index and temperature. OPT LETT. 46 (2021), 6071-6074.(SCI/EI),(IF:3.600)
[28] D. Yi, M. Su, X. Tan, Y. Geng, X. Li,   L. Wang, X. Hong. Four-wave mixing-based photonic crystal fiber microfluid   sensor with embedded U-shape microslits. OPT EXPRESS. 29 (2021), 15434-15442.(SCI/EI),(IF:3.800)
[29] D. Yi, F. Liu, Y. Geng, X. Li, X.   Hong. High-sensitivity and large-range fiber optic temperature sensor based   on PDMS-coated Mach-Zehnder interferometer combined with FBG. OPT EXPRESS. 29   (2021), 18624-18633.(SCI/EI),(IF:3.800)
[30] F. Teng, D. Yi, X. Hong, X. Li.   Optimized localization algorithm of dual-Sagnac structure-based fiber optic   distributed vibration sensing system. OPT EXPRESS. 29 (2021), 13696-13705.(SCI/EI),(IF:3.800)
[31] D. Yi, L. Wang, Y. Geng, Y. Du, X. Li,   X. Hong. Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its   Rapid Inline Fabrication. SENSORS-BASEL. 21 (2021).(SCIE/EI),(IF:3.900)
[32] W. Luo, X. Li, J. Meng, Y. Wang,   X. Hong. Surface Plasmon Resonance Sensor Based on Side-Polished D-Shaped   Photonic Crystal Fiber With Split Cladding Air Holes. IEEE T INSTRUM MEAS. 70   (2021), 1.(SCI/EI),(IF:5.600)
[33] A.G. Kumar, X. Li, Y. Du, Y.   Geng, X. Hong. UV-photodetector based on heterostructured   ZnO/(Ga,Ag)-co-doped ZnO nanorods by cost-effective two-step process. APPL   SURF SCI. 509 (2020).(SCI/EI),(IF:6.700)
[34] T. Sharma, J. Wang, B.K. Kaushik, Z.   Cheng, R. Kumar, Z. Wei, X. Li. Review of Recent Progress on Silicon   Nitride-Based Photonic Integrated Circuits. IEEE ACCESS. 8 (2020),   195436-195446.(SCIE/EI),(IF:3.900)
[35] Y. Chen, Y. Ge, W. Huang, Z. Li, L. Wu,   H. Zhang, X. Li. Refractive Index Sensors Based on Ti 3 C 2 T x MXene   Fibers. ACS APPL NANO MATER. 3 (2020), 303-311.(SCI),(IF:5.900)
[36] 耿优福, 李学金. 基于微结构光纤的温度传感器研究. 应用科学学报. 38 (2020), 260-278.(中国科技核心期刊)
[37] Z. Liu, J. Huang, Q. Wang, J. Zhou, J.   Ye, X. Li, Y. Geng, Z. Liang, Y. Du, X. Tian. Indium oxide-black   phosphorus composites for ultrasensitive nitrogendioxide sensing at room   temperature. Sens. Actuators B Chem (2020).(SCI/EI),(IF:8.400),(Top期刊)
[38] 陈郁芝, 李学金. 基于单模光纤传输的单模-无心-单模光纤型表面等离子体共振传感器(特邀). 红外与激光工程. 49 (2020),   325-329.(EI)
[39] D. Yi, Z. Huo, Y. Geng, X. Li, X.   Hong. PDMS-coated no-core fiber interferometer with enhanced sensitivity for   temperature monitoring applications. OPT FIBER TECHNOL. 57 (2020), 102185.(SCI/EI),(IF:2.700)
[40] J. Wang, Z. Xing, X. Chen, Z. Cheng, X.   Li, T. Liu. Recent Progress in Waveguide-Integrated Graphene Photonic   Devices for Sensing and Communication Applications. FRONT PHYS-LAUSANNE. 8   (2020).(SCI),(IF:3.100)
[41] D. Yi, Y.Z. Chen, Y.F. Geng, F. Teng, Y.   Li, X.J. Li, X.M. Hong. Low crosstalk hybrid fiber optic sensor based   on surface plasmon resonance and MMI. OPT LETT. 45 (2020), 117-120.(SCI/EI),(IF:3.600)
[42] Y. Li, L. Wang, Y. Chen, D. Yi, F. Teng,   X. Hong, X. Li, Y. Geng, Y. Shi, D. Luo. High-performance fiber sensor   via Mach-Zehnder interferometer based on immersing exposed-core   microstructure fiber in oriented liquid crystals. OPT EXPRESS. 28 (2020),   3576-3586.(SCI/EI),(IF:3.800)
[43] D. Yi, Y. Chen, Y. Geng, F. Teng, Y. Li,   F. Liu, X. Li, X. Hong. Interrogation technique analyses of a hybrid   fiber optic sensor based on SPR and MMI. OPT EXPRESS. 28 (2020), 20764-20772.(SCI/EI),(IF:3.800)
[44] Y. Chen, L. Fang, D. Yi, X. Li,   X. Hong. Thermo-Optic Property Measurement Using Surface Plasmon Resonance-Based   Fiber Optic Sensor. IEEE SENS J. 20 (2020), 11357-11363.(SCIE/EI),(IF:4.300)
[45] Y. Li, Y. Chen, D. Yi, Y. Du, W. Luo, X.   Hong, X. Li, Y. Geng, D. Luo. A self-assembled fiber Mach-Zehnder   interferometer based on liquid crystals. J MATER CHEM C. 8 (2020),   11153-11159.(SCI),(IF:6.400)
[46] J.Y. Huang, J.X. Zhou, Z.H. Liu, X.J.   Li, Y.F. Geng, X.Q. Tian, Y. Du, Z.F. Qian. Enhanced acetone-sensing   properties to ppb detection level using Au/Pd-doped ZnO nanorod. SENSOR   ACTUAT B-CHEM. 310 (2020), 127129.(SCI/EI),(IF:8.400),(Top期刊)

 



undefined